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Speckle statistics in a chaotic multimode fiber
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Wave chaos is devoted to the study of wave motion when the geometrical limit of rays is chaotic. Imprints
of ray chaos may be found either in spectral and spatial properties of modes or in spatio-temporal evolution of
wave packets. In this paper, we present a thorough experimental and theoretical analysis of field statistics for
light propagating in a multimode fiber with a noncircular cross section. This optical fiber serves as a powerful
tool to image waves in a system where light rays exhibit a chaotic dynamics. We show that, in the speckle
regime, the experimentally measured statistical properties of intensity patterns are well accounted for by a
‘‘random Gaussian’’ hypothesis. A comparison is also made in the case of regular ray motion by using a
circular optical fiber. Possible extensions and applications of the tools and concepts of wave chaos are men-
tioned in modern communication technology.
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I. INTRODUCTION

After three decades of studies in the field ofquantum
chaos, the nature of quantum eigenstates of systems wh
classical limit is chaotic is still an active subject of resear
In classical Hamiltonian dynamics, chaos is explained
terms of exponential instability of trajectories with respect
initial conditions, leading to mixing and ergodicity. Thus, th
application of probability theory to these deterministic sy
tems is justified@1#. It is crucial to realize that asymptoti
~long-time! limits of dynamical averages are essential
classical ergodic theory. In contrast, bounded classically c
otic quantum systems show different behaviors since, t
frequency spectrum being discrete, all phase-space infor
tion is essentially obtained after a finite amount of time. T
conflicting situation reveals the subtle and singular nature
the semiclassical limit~boldly implemented as the famou
‘‘ \→0’’ limit ! whose understanding is precisely the subj
of quantum chaos. In this limit, wave functions are uniform
distributed over the whole available phase space, whic
ergodically explored by the classical trajectories, thus loca
resulting in a random superposition of plane waves. Track
fingerprints of classical phase-space structures in quan
properties~distribution of eigenfrequencies, statistical pro
erties of eigenmodes, Green’s functions, and time evolut!
led to major advances in the field, such as random ma
theory, and periodic orbit theory, dynamical localization@2#.
In fact, these advances rapidly proved to be relevant for o
wave systems sharing close analogies with quantum sys
~e.g., microwave or acoustic systems!, giving rise towave
chaos. For these systems, the goal is to understand the fa
interference in the geometrical limit~wavelength l→0)
when the ray motion is chaotic. Connections were also fo
with disordered systems@3#. Wave and quantum chaos a
thus now well documented topics@2,4,5# covering a wide
variety of physical systems, such as complex atomic nu
@6#, Rydberg atoms@7#, electrons in quantum dots@8#, cold
atoms@9#, surface waves@10#, elastodynamics@11#, acoustics
1063-651X/2002/65~5!/056223~15!/$20.00 65 0562
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@12#, microwaves@13#, and optical cavities@14#. Despite
their interesting potentialities@15#, wave chaos experiment
with visible light, in particular in optical fibers, have bee
largely underestimated. Indeed, the huge advantage of
in optical fibers resides in the fact that it can be most ea
imaged, thus enabling one to achieve very precise meas
ments of intensity patterns. Recently, using a chaotic opt
fiber with a D-shaped transverse section, we have obse
and analyzed scarred patterns@16#. While spectacular, this
behavior is exceptional in such chaotic optical fibers, an
random field is more generally obtained. The differences
tween these behaviors can be evidenced through an ana
of the field in terms of spatial statistics and correlations. T
aim of the present paper is to provide the first experimen
characterization of wave intensity in multimode fibers in t
speckle regime, together with a theoretical analysis in te
of wave chaos.

This paper is organized as follows. In Sec. II, we pres
a theoretical approach based on a modal decompositio
describe light propagation along a multimode fiber. To est
lish an analogy with quantum systems, we introduce
paraxial approximation, which we show to be valid in th
system we consider. In Sec. III, we start from a Hamiltoni
formalism for wave propagation to briefly describe the ge
metrical limit of rays and introduce the concept of chao
billiards relevant to our study. Then semiclassical argume
are briefly reviewed and used to predict Gaussian statistic
guided modes. A brief mention of periodic orbit theory
made to illustrate the close connection between modes
periodic ray motion. In Sec. IV, our experiment is describe
starting with the fabrication of a specially designed mu
mode fiber. The experimental setup is then presented,
lowed by an analysis of the measurements of wave inten
We show the relevance of a Gaussian analysis for a w
pattern resulting from the superposition of ergodic guid
modes. A special emphasis is placed on spatial correlat
of the near-field using the information contained in the f
field intensity pattern. We cannot conclude without mentio
©2002 The American Physical Society23-1
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ing that, in the current context of rapidly growing optic
communications, the understanding and fine control of co
plex wave propagation in multimode fibers will constitute
indispensable issue in future transmission systems.

II. THE MODEL FOR PROPAGATION ALONG THE FIBER

We postpone to Sec. IV, dedicated to experimental resu
the details of fabrication of the fiber we use. Here, we sim
give those of its characteristics which justify the approxim
tions of our model. We use a highly multimode step-ind
fiber, with respective indices of the core and of the claddi
nco51.458 andncl51.453. The transverse shape of the co
is a truncated disk~see Fig. 1! invariant along the fiber.

Since we are dealing with a case of weak guidan
@(nco2ncl)/ncl!1#, it is expected that one can constru
modes whose transverse field is essentially polarized in
direction. Indeed, in weakly guiding waveguides, though
index nonuniformity is essential to ensure total internal
flection, one may neglect it as far as polarization effects
concerned@17#. In spite of the edges of the transverse s
tion, we checked that the linear polarization of light issu
from our laser is indeed fairly well preserved throughout
fiber. We therefore will use the scalar approximation in t
following theoretical approach.

A. Modal decomposition

We denote byz the position along the axis of the fiber an
by r the position in the transverse plane. Using the tran
tional invariancen(r,z)5n(r), the three-dimensional~3D!
Helmholtz stationary equation

~D1]zz!c~r,z!1n2~r!k0
2c~r,z!50, ~1!

whereD is the transverse Laplacian, can be reduced to

Df~r;b!1@n2~r!k0
22b2#f~r;b!50, ~2!

wherek052p/l (l is the vacuum wavelength of the sourc!
and

FIG. 1. Sketch of the transverse section of the multimode fi
studied in the paper. The cladding of the actual fiber is thicker t
shown here.
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c~r,z!5E db f~r;b!eibz. ~3!

For bcl
2[ncl

2k0
2<b2<bco

2 [nco
2 k0

2 , Eq. ~2! is solved at dis-
crete values,bn , called the propagation constants of th
guided modes. This eigenvalue problem can be written i
form

F2
1

2
D1

bco
2 2n2~r!k0

2

2 G f5
bco

2 2b2

2
f, ~4!

which, by writing V(r)5@bco
2 2n2(r)k0

2#/2, emphasizes the
formal equivalence between Eq.~2! and a stationary Schro¨-
dinger equation

F2
1

2
D1V~r!G f5Ef. ~5!

Theeigenenergy Etakes on discrete valuesEn , related to the
bn’s through

bn
25bco

2 22En . ~6!

Using the basis generated by the eigenmodesfn of the
Schrödinger equation~5!, the solution of Eq.~1! can be writ-
ten as

c~r,z!5(
n

cnfn~r!exp~ i bnz!

5(
n

cnfn~r!exp~ i Abco
2 22En z!, ~7!

where the sum should generically include the continu
states~nonguided modes with imaginaryb ’s!.

Defining En5kn
2/2, to each mode can be associated

angle un with respect to thez axis defined by tanun
5kn /bn ~or, equivalently, by sinun5kn /bco). The cutoff
angle for guided modes is given by sinumax

5A12(ncl /nco)
2 ~around 5° with the values of the indice

given above!, which corresponds to the maximum valu
kmax5Abco

2 2bcl
2 . This value is related to the total number

guided modes@18#. Indeed, the number of allowed valuesbn
in the interval@b,bco# ~for a given polarization! is given by
the Thomas-Fermi formula, which, in our context, reads

N~b!5
1

2pEE.V
dr @E2V~r!#5

1

2pEcore
dr

n2~r!k0
22b2

2

5
S

4p
~bco

2 2b2!5
Sk2

4p
, ~8!

whereS is the area of the core. This expression yields
well-known formula@19# for a cylindrical fiber of radiusa:
N5v2/2, with v5ak0(nco

2 2ncl
2 )1/2, when allowing for both

polarizations. In our exotic fiber, the total number of mod
~with a given polarization! is approximately 1500.

r
n

3-2
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B. The paraxial approximation

Many of the theoretical results in the field of wave cha
have been obtained in the quantum context@7,18#. Though
the introduction of the quantum formalism is not theore
cally indispensable, it is quite convenient to our purpo
and is easily performed through the following transform
tion. Starting from Eq.~5!, one can write a pseudo-time
dependent Schro¨dinger equation

ibco]zw~r;z!5@2 1
2 D1V~r!# w~r;z! ~9!

which can be viewed as an evolution equation alongz. Any
solution w(r;z) of the above equation can also be deco
posed on thefn’s,

w~r;z!5(
n

cnfn expS 2 i
En

bco
zD . ~10!

Note that Eq.~9! corresponds to the paraxial~or para-
bolic! approximation performed on Eq.~1!. Indeed, if one
writes

c~r,z!5z~r;z!ei bcoz, ~11!

Eq. ~1! becomes

ibco]zz~r;z!5F2
1

2
D1

bco
2 2n2~r!k0

2

2 G z~r;z!

2
1

2
]zzz~r;z! ~12!

which is equivalent to Eq.~9! insofar as one may neglect th
second orderz derivative of z ~paraxial or slowly varying
amplitude approximation!:

u]zzzu!ubco]zzu. ~13!

This neglect amounts to approximate the exact solution~7!
of Eq. ~1! by

w~r;z!ei bcoz5(
n

cnfn~r!expS i
bco

2 2En

bco
zD . ~14!

The validity of this approximation is easily established
our experimental context. Indeed, by comparison of Eqs.~7!
and ~14!, corresponding terms of each sum are close if
difference between their phases remains much smaller
2p, i.e.,

db5̂bco2
En

bco
2Abco

2 22En.
1

2
bcoS En

bco
2 D 2

!
2p

z
.

~15!

Condition ~15! leads to values ofu somewhat smaller
than the cutoff angleumax, when allowing for the actua
length of the fiber. Therefore, this condition amounts to
stricting the sum in Eq.~14! to the first few hundreds o
guided modes.
05622
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III. FROM RAYS TO WAVE

We now consider the geometrical limit of rays and pr
pose to do so by deriving the eikonal equation in the para
approximation. This is technically much simpler than der
ing the eikonal equation directly from the 3D Helmhol
equation without restricting the generality of the ensuing
sults@20#. We are then naturally led to investigate a proble
of chaotic billiards@21,22#. Then we will address the impli-
cations of chaotic ray motion on the statistical spatial pro
erties of guided modes.

A. Chaotic ray motion

Starting from the parabolic equation~9!, if one substitutes

w~r;z!5A~r;z!exp@ i bcoL~r;z!#, ~16!

two equations are obtained,

22]zL5~“L!21S 12
n2~r!

nco
2 D 2

1

bco
2

DA

A
, ~17!

]z~A2!52“•~A2
“L!. ~18!

Equation ~18! is simply a conservation equation for th
‘‘density’’ A2, with ‘‘current’’ A2

“L, whereas Eq.~17! is not
the eikonal equation since it allows for diffraction effec
through the last term of the right-hand side. Indeed, the t
eikonal equation, associated to geometrical optics, is
tained by neglectingbco

22DA/A, consistently with condition
~13!. It therefore reads

2]zL5H~r,“L!, ~19!

where

H~r,p'!5
p'

2

2
1

1

2 S 12
n2~r!

nco
2 D ~20!

is the Hamiltonian andp' is the transverse momentum. Th
rays of the geometrical limit are the characteristic curv
„r(z),p'(z)… of the Hamilton-Jacobi equation and satisfy t
Hamilton equations

dr

dz
5

]H

]p'

, ~21!

dp'

dz
52

]H

]r
. ~22!

These equations are straightforwardly solved for our fib
Indeed, inside the uniform core,H is reduced to its ‘‘kinetic’’
part,p'

2 /2, which can be related to the angleu defined above
throughp'

2 5sin2 u. At the boundaries between core and cla
ding, if sin2 u,(12ncl

2 /nco
2 ), the ray is reflected back to th

core. Between two consecutive specular reflections, the
consists of a straight segment. We have thus reduced
initial wave problem to the dynamics of a point particle i
side a domain with perfectly rigid walls: a billiard@23#.
3-3
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DOYA, LEGRAND, MORTESSAGNE, AND MINIATURA PHYSICAL REVIEW E65 056223
Here, the dynamics refers to the evolution alongz and can be
most easily visualized by projecting the ray trajectories o
the transverse plane. From now on, we will restrict our stu
of the motion to the two-dimensional~2D! projected motion.

Without going into technicalities, we wish now to illus
trate the particular dynamics of chaotic billiards. Let us fi
recall the regular motion of rays in the billiard with the sha
of a circle. Figure 2~a! shows a typical trajectory within suc
a billiard after a propagation length of 150 in units of t
radiusR. One can clearly observe the presence of a cau
The latter encloses a region of space that this trajectory n
visits ~whatever the number of reflections!. This kind of
structure is destroyed in chaotic billiards. This is exemplifi
by considering the following modification of the previou
billiard. A new shape is obtained by cutting a small straig
segment of length 1022 R. Whereas the change of bounda
is not visible in Fig. 2~b!, its effect on the dynamics is dra
matic: for the same initial conditions~position and direction!,
the formerly forbidden region is invaded after a finite nu
ber of reflections. In the theory of Hamiltonian chaos, it
shown that this effect stems from theextreme sensitivity to
initial conditions, which appears for any nonvanishing si
of the cut~excepted for a cut of lengthR, which corresponds
to the semicircular billiard!.

The qualification of chaos is more conveniently stud
through a phase-space representation. A common repres
tion in billiards consists in restricting the dynamics to t
knowledge, at each impact, of the curvilinear abscissa,s, and
of the sine of the angle of reflection,a, with respect to the
inward boundary normal~see Fig. 3!. Thus, atj th reflection,
defining t̂ j the unit vector tangent to the oriented boundary
abscissasj , andn̂j the inward normal unit vector, the trans
verse momentum readsp'5 t̂ j sinu sinaj1n̂j sinu cosaj .
The same trajectories as in Fig. 2 are shown in the ph
space (s,sina) in Fig. 4: the regular motion is associated
the conservation ofa in the circular billiard @Fig. 4~b!#,
while in the truncated billiard, which is chaotic, the who
phase space is eventually uniformly covered by almost
trajectory@Fig. 4~b! shows the trajectory after a finite numb
of bounces, i.e., at finite time#. It should be mentioned her
that there exist particular trajectories which do not fit in
this scheme, namely, the periodic orbits. These orbits

FIG. 2. Examples of a single ray trajectory after a propagat
of 150 in units of the radiusR: ~a! inside a circular billiard, where
a caustic is clearly observed;~b! inside a circular billiard cut by a
small straight segment of length 1022R. The caustic is destroyed
due to the chaotic motion.
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trajectories which close upon themselves in phase sp
~hence also in real space!. For a chaotic system they must, o
course, be unstable in the sense that any small initial de
tion from it must diverge exponentially with time. To b
complete, the proper way of evidencing chaos in billiards
by considering the behavior of a collection of initial cond
tions. In Fig. 5, this set is initially shown as a dark disk in t
phase space associated to the geometry of our actual fi
Rapidly ~exponentially with the number of reflections! the
initial conditions will spread over the whole surface. Th
behavior is precisely the sign of Hamiltonian chaos.

n

FIG. 3. Representation of the dynamics in a billiard through
coordinates associated, at each rebound, to the curvilinear abscs
along the boundary, and the sine of the angle of reflectiona with
respect to the inward boundary normal.

FIG. 4. Same trajectories as in Fig. 2 using the phase-sp
coordinates (s, sina) introduced in Fig. 3.~a! The regular motion in
the circular billiard is associated to the conservation ofa; ~b! in the
chaotic billiard, the whole phase space is asymptotically uniform
covered by almost any ray trajectory.
3-4



f
r

e
a
m

a
t-
b

o
us
e

rg

te
e
c

de
de

ing
a-
ill

l
2D

the

as
, it

q.
nt

f
en

d
,
aves
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B. Gaussian statistics of ergodic guided modes

In the following, we will use the quantum terminology o
semiclassical techniques to designate what is otherwise
ferred to as the geometrical theory of diffraction@24#. Thus,
using the quantum analog of our optical waveguide, the g
metrical limit of rays corresponds to the classical limit of
quantum problem. In our case, the small parameter for se
classical expansions is (kL)21, where k25bco

2 2b252E
and L;AS is the typical size of the core@25#, and ray tra-
jectories have to be viewed as a genuine skeleton of w
motion@26#. In particular, the features of uniformity and iso
ropy resulting from the chaotic exploration of phase space
rays, as illustrated in the last section~Fig. 5!, should be ex-
pected to govern, likewise, the statistical distribution
eigenmodes. The ergodicity of eigenmodes can be rigoro
shown@27# and may be formally stated in writing down th
local density of states,

r0~r;k!5

E dp' d„k2/22bco
2 H~r,p'!…

E dr8dp'8 d„k2/22bco
2 H~r,p'!…

[ lim
kL→`

^uf~r!u2&k , ~23!

where the average reads

^uf~r!u2&k5
1

N (
n

ufn~r!u2, ~24!

the sum running overN eigenmodes centered aroundE
5k2/2. This average is meaningful provided that the ene
interval is large enough to ensure a large value ofN, but
small enough for the density of states to be approxima
constant within this interval@28#. In practice, an averag
over a few modes is adequate, and the ergodic behavior
even become a generic feature of individual eigenmo
when (kL)21 tends to zero. In Fig. 6, the squared amplitu
of such an ergodic mode is shown. It has been obtained
numerically solving

FIG. 5. Sketch of the typical evolution in phase space o
subset of initial conditions. Starting from an initial disk, subsequ
stretching and folding are depicted at larger and larger times.
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~D1k2!f50 inside the core

f50 on the boundary. ~25!

The above eigenvalue problem~with Dirichlet conditions! is
a good approximation of Eq.~4! for low-lying guided modes.
Nevertheless, the following qualitative arguments concern
the statistics of eigenmodes do not rely on this approxim
tion. In Sec. IV, to analyze our experimental results, we w
not use it. In Fig. 6,k587.89~in units of inverse radius of
the billiard!. This figure illustrates the fact that a typica
eigenmode can be viewed as a random superposition of
plane waves of different phases and directions but with
same wave numberk @29#.

If one views a typical specklelike guided mode locally
the superposition of plane waves with random directions
may be shown that the field autocorrelation function

Cf~r,r0 ;k!5^f!~r2 1
2 r0!f~r1 1

2 r0!&k , ~26!

where ^•••&k is to be understood as an ensemble~energy!
average in the asymptotic limitkL@1, has the expected
value @30,31# @following the microcanonical result~23!#

Cf~r,r0 ;k!

5

E dp' exp@ ibco p'•r0# d„k2/22bco
2 H~r,p'!…

E dr8 dp' d„k2/22bco
2 H~r8,p'!…

.

~27!

In the case of a 2D billiard, whereH(r,p')5p'
2 /2 in its

interior, the Diracd function only fixes the norm ofp' .
Equation~27! thus amounts to the well-known result@31#

Cf~r,r0 ;k!5J0~kr 0!, ~28!

whereJ0(x) is the zero-order Bessel function andr 0 is the
norm of r0. Using an ergodic hypothesis, the average in E
~26! can be replaced by a spatial average over the midpoir,

a
t

FIG. 6. A typicalergodiceigenmode~squared amplitude!, solu-
tion of Eq.~25! with Dirichlet boundary conditions, in the truncate
chaotic billiard withkR587.89. Apart from the obvious symmetry
such an eigenmode can be viewed as a superposition of plane w
at a givenk with random phases and directions.
3-5
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which, in practice, should be evaluated over a domain
compassing a sufficiently large number of oscillations@30#.

In the asymptotic limit, a random superposition of pla
waves with random uncorrelated phases is expected to y
a Gaussian random field. In the case of real eigenmodes
implies that the probabilityP(f)df that the eigenfunction
has a value betweenf andf1df is given by

P~f!5
1

A2p^f2&
expS 2

f2

2^f2&
D , ~29!

where^•••& denotes a spatial average on the surface of
fiber section@32#. One should note that a Gaussian distrib
tion does not imply the stronger requirement~27!. The result
~29! is also recovered by random matrix theory~RMT! for
the Gaussian orthogonal ensemble of real symmetricN3N
matrices in the limitN→` @28#. Indeed, RMT leads to the
so-called Porter-Thomas distribution for the squared eig
vector components. The latter distribution is obtained fr
Eq. ~29! for the intensityI 5f2 and reads

P~ I !5
1

A2pI ^I &
expS 2

I

2^I & D . ~30!

To check this behavior, we first numerically solve t
propagation equation~25! with Dirichlet boundary condi-
tions using a plane-wave decomposition method. T
method @33# has allowed the calculation of the first 200
eigenmodes of the D-shaped billiard. Because of Dirich
boundary conditions, the eigenmodes are chosen to be r

Using these calculated modes, we have evaluated thera-
dial field autocorrelation functionCf(r 0 ;k),

Cf~r 0 ;k!5
1

2pE0

2p

du Cf~r0 ;k! ~31!

with u the polar angle and where the field autocorrelat
function Cf(r0 ;k) is equivalent to Eq.~26! with a spatial
average overr,

Cf~r0 ;k!5^f!~r2 1
2 r0!f~r1 1

2 r0!& r , ~32!

where the averagê•••& r reads**D•••dr/**Duf(r)u2 dr,
with D the domain of integration.

In Fig. 7, we have represented one typical high-ene
eigenmode~amplitude! of the D-shaped billiard for a value
of k equal to 87.89 in units of inverse radiusR, its probabil-
ity distribution and the corresponding radial field autocor
lation function following Eqs.~31! and~32!. The assumption
of a random superposition of plane waves is confirmed
the good agreement between the probability distribut
P(f) and the Gaussian distribution, as can be seen in
7~b!. The radial autocorrelation functionCf(r 0 ;k) is com-
pared to the expected zero-order Bessel functionJ0(kr 0) for
kR587.89. Note that the prediction~28! is perfectly veri-
fied. From the oscillatory nature of the autocorrelation fun
tion, one should define a correlation length deduced from
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quasiperiod of the autocorrelation function. This correlati
length is related to the typical size of the speckle grain wh
is of the order ofk21.

In order to reveal the ergodic behavior of the chao
eigenmodes of the D-shaped billiard, we have compared
previous results with those obtained for a typical high-ene
mode of the circular billiard. For large values of the qua
tized numberm associated to the number of zeros in t
radial direction, there exists a simple relation between
couple of quantized numbers (l ,m) associated to the regula
eigenmode of the circular billiard and the value ofk given
by @34#

k'~ l 12m!
p

2R
, m@1. ~33!

The resolution of Eq.~25! for the circular fiber yields solu-
tions of the form

FIG. 7. ~a! A high-energy eigenmode~amplitude! with kR
587.89 in the truncated chaotic billiard,~b! its associated probabil
ity distributionP(f), compared to a Gaussian distribution~continu-
ous line!, and~c! the radial field autocorrelation functionCf(r 0 ;k).
3-6
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f l ,m~r!5Jl~kmr !3H cos~ lq! even solution

sin~ lq! odd solution,
~34!

whereJl(kmR)50 andq is the angular variable in the cir
cular coordinates. Using these relations, we have calcul
one eigenmode of the circular billiard, for a value ofkR
'87.0, shown in Fig. 8~a!. The associated probability@Fig.
8~b!# and the corresponding radial field autocorrelation fu
tion @Fig. 8~c!# deviate from the theoretical predictions~28!
and ~29! pertaining to ergodic modes. This is not surprisi
since the regular eigenmodes are obviously nonergodic
deed, in this context, a good test of ergodicity relies on
independence of the above statistical quantities on the sp
domainD introduced in Eq.~32! @30#. This domain defines
the statistical sample used for the evaluation of the distri
tion probability. For the eigenmodes of the D-shaped fib

FIG. 8. ~a! A high-energy eigenmode withkR587.0 in the
regular circular billiard,~b! its associated probability distributio
P(f), compared to a Gaussian distribution~continuous line!, and
~c! the radial field autocorrelation functionCf(r 0 ;k).
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we have checked this independence. On the contrary, in
circular fiber, wide variations are observed from one sam
to another. Surprisingly enough, for particular domains
this regular fiber, one can even observe that the behavio
the radial field autocorrelation function is very close to t
zero-order Bessel function~Fig. 9!. It does not necessarily
follow from this result that the field autocorrelation functio
Cf(r0 ;k) ~32! is isotropic, as implied by Berry’s prediction
~28! for ergodic eigenmodes. As an illustration, Fig. 9 d
plays the behavior of the field autocorrelation functions c
culated for eigenmodes, with similar values ofk, of the
D-shaped~a! and of the circular~b! fibers. Note that, while
the radial autocorrelation functions for these two modes a
nearly indistinguishable@Fig. 9~c!#, only the ergodic eigen-
mode exhibits isotropic correlations.

C. Periodic orbit theory

As any prediction concerning average behaviors, the
sults presented in the previous section suffer rare but imp
tant exceptions. Indeed, inspecting Fig. 10~a!, a clear devia-
tion from ergodicity is seen, which is in fact associated to
particular periodic orbit~superimposed as a solid line!. This
intensity enhancement in the vicinity of a single period
orbit ~p.o.! is coinedscarring @33,35#. This unexpected be
havior has led the quantum chaos community to recons
the semiclassical limit~23!. They have established that th
semiclassical skeleton of eigenmodes is built on all the p
odic orbits of the system. Thus the one-to-one relations
shown in Fig. 10, between an eigenmode and a periodic
bit, has to be considered as an exception, since, as the n
ber of p.o.’s proliferates exponentially with their length
eigenmodes must build upon many of them. The crucial r
of p.o.’s had already been exemplified by the famoustrace

FIG. 9. Field autocorrelation functions for~a! an eigenmode of
the truncated billiard,~b! an eigenmode of the circular billiard, an
~c! their associated radial representations.
3-7
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formula @36#, which establishes the semiclassical express
of the density of statesn(k)5dN/dk,

nsc~k!5n0~k!1(
p

l pwp exp~ i kl p!. ~35!

In the above equation, the sum is running over the perio
orbits, including multiple traversals, andl p is the total trans-
verse length of orbitp. The quantitywp encompasses a clas
sical amplitude related to the stability of the orbit and
phase associated to caustics and reflections. The smooth
of the density~for the Dirichlet case! is given by the so-
called Weyl formula@37#

n0~k!5
S

2p
k2

P

4p
, ~36!

whereP is the perimeter of the billiard andS is its surface.
Note that the leading term of the above expression is dire
obtained by differentiating Eq.~8!. Considering the actua
density of statesn(k)5( jd(k2k j ), Eq. ~35! suggests tha
its Fourier transform provides alength spectrum, which dis-

FIG. 10. Examples of eigenmodes displaying an intensity
hancement in the vicinity of~a! an unstable periodic orbit~super-
imposed as a solid line! and~b! the continuous family of diameter
~boundaries shown as solid lines!.

FIG. 11. Thelength spectrumor Fourier transform of the den
sity of statesn(k), for the eigenvalue problem~25! in the truncated
chaotic billiard shown in Figs. 6 and 10. Thetrace formulapermits
us to show that the length spectrum should have peaks at the p
lengths of the periodic orbits. Arrows indicate lengths correspo
ing to the periodic orbits shown in Fig. 12.
05622
n
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plays peaks located at the lengths of the p.o.’s. In Fig. 11,
show the length spectrum of the above considered billiard
few orbits among the shortest are indicated by arrows and
displayed in Fig. 12. Remark that the vast majority of pe
odic orbits contribute to the generic ergodic behavior d
scribed in the previous section. Interestingly enough, form
~35! allows us to recover many of the predictions of RM
@38#. Nonetheless, the least unstable periodic orbits or
continuous family of diameters which survived the trunc
tion, and constitute marginally unstable periodic orbits,
responsible for the non-Gaussian statistics of the eigenmo
shown in Fig. 10.

IV. EXPERIMENTS

A. Fiber design

The fiber designed and fabricated in our lab for the e
periment is now briefly described. Its transverse section
truncated disk~see Fig. 1!: a silica bar of 1-cm diameter is
cut and polished and the fiber is pulled at a temperature
enough to avoid smoothing of the edges. This process
sures a small roughness~a few nanometers! of the planar
surface. Moreover, since we only use lengths of the orde
10 cm, a high translational invariance is achieved~less than
3‰ error on the fiber diameter!. The final dimensions are
120 mm for the diameter of the disk and 90mm for the
truncated diameter~Fig. 13!. The cladding is composed o
40% of a black silicon~Rhodorsil RTV 1523 A! and 60% of
transparent silicon~Rhodorsil RTV 1523 B!. We use a black
silicon cladding in order to avoid propagation of light in th
cladding which could complicate the far-field intensity pa
tern. The indices are, respectively,nco51.458 in the core and
ncl51.453 in the cladding. To prevent mode coupling due
bends or stresses, we keep the fiber straight by embeddi

-

iod
-

FIG. 12. A few periodic orbits whose periods correspond
peaks of the length spectrum shown in Fig. 11.
3-8
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in a glass microcapillary pipet. The set is kept together i
dural tube. A circular multimode fiber of 120-mm diameter
with a black silicon cladding has been fabricated in the sa
way to compare spatial distributions of intensity for a chao
and a regular billiardlike system.

B. Experimental setup

For our experiments, we use a He-Ne laser sourcel
5632.8 nm) with output power of 1 mW. The experimen
setup is illustrated in Fig. 14. The laser beam of 1-mm dia
eter is first spatially filtered and expanded to obtain a 5-m
diam beam. As a result, the final diameter is large compa
with the 120-mm-diam fiber so that the laser beam may
viewed as a plane wave. We also performed another typ
illumination by using a310 microscope objective to focu
the filtered and expanded beam on the fiber input.

The key parameter of the experiment is the incident dir
tion of the beam given by the angleu0 between the beam an
the fiber axis~Fig. 15!. The incident angle of the beam on th
fiber input fixes the mean order of the excited modes by
way of the following simple relation:

FIG. 13. Microscope observation of the transverse section of
fiber embedded in a glass microcapillary pipet.

FIG. 14. Experimental setup.
05622
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kc5k0 sinu0 , ~37!

where k052p/l. Indeed, it should be kept in mind tha
even with an ideal plane wave, the propagating wave in
fiber is essentially decomposed over a certain numbe
guided modes whose eigenvalues are centered onkc .

For the detection, we use a Sony CCD Camera
3983288 pixel size. The CCD is used in its most sensiti
regime~between 0.6mm and 0.7 mm). At the output of the
fiber, we detect either the near-field intensity or the far-fie
intensity. The near-field intensity is obtained by imaging t
fiber output with a320 microscope objective, whereas th
far-field intensity is observed in the focal plane of a 2-c
focal-length lens in the detection cell. Figure 16 shows ty
cal near-field~a! and far-field~b! experimental intensity pat
terns at the fiber output for a quasi-plane-wave illuminatio

C. Analysis of experimental results

Here, we propose an analysis of our observations ba
on the random Gaussian character of eigenmodes in
D-shaped fiber. The patterns of Fig. 16 are associated
superposition of eigenmodes for a value of the transve
wave numberkcR equal to 36. This value is deduced fro
the mean radius of the ring in the far-field intensity obser
tion. The far-field intensityĨ (k,Q) is essentially the square
modulus of the spatial Fourier transformTF$c(r)% of the

e

FIG. 15. Relation between the incident angle on the fiber a
the transverse wave vectork.

FIG. 16. ~a! Experimental near-field and~b! far-field intensity
patterns forkcR'36.0 for a quasi-plane-wave illumination.
3-9
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field at the output of the fiber. The width of the ring in Fi
16~b! gives an estimate of the number of excited modes
practice, this number is evaluated by assuming a Gaus
shape for the radial envelope of the far-field intensity. Its f
width at half-maximum fixes thek interval aroundkc and
yields 175 modes. The ring width we observe is more imp
tant than what we can theoretically expect from a plane-w
illumination. It is mainly due to the initial excitation: we d
not have a perfect plane wave at the fiber input, so t
several modes are excited.

Thus, the complex fieldc(r,z) for a propagation lengthz
reads

c~r,z!5 (
n51

N

anfn~r!exp~2 ibnz!, ~38!

where an is the weight of modefn in the superposition,
given by the projection of the initial condition on the eige
modes basis$fn%,

an5E E
S
fm

! ~r!c~r,z50!dr/S ~39!

with S the surface of the transverse section of the fiber
bn the propagation constant associated tofn . The section of
the fiber we study presents a symmetry axis. The eigenmo
basis is therefore naturally decomposed into even- and o
parity modes which correspond to two independent spe
@18#.

Here we use a concept inspired from quantum mechan
In close analogy with the Heisenberg time@39#, theHeisen-
berg lengthis defined as

zH52p/Db, ~40!

where Db54p/(Sbco) is the mean modal spacing for
given parity. Beyond this length, the guided modes can
considered as individually resolved leading to uncorrela
phases between modes in the decomposition~38!. For a
propagation lengthz longer than the Heisenberg lengthzH ,
the productsane2 ibnz may be viewed as independent rando
variables. Indeed, this condition implies that the phase
ference between two neighboring guided modes is gre
than 2p. It is interesting to note that, in our system, th
Heisenberg length

zH5
bcoS

2
5nco

pS

l
~41!

may be viewed as aneffectiveRayleigh length@40#. For a
Gaussian laser beam propagating out of the waistw0, the
Rayleigh lengthzR5p(w0)2/l delineates the borderline be
tween the Fresnel near-field and the Fraunhofer far-field
gions. At distances large compared to the Rayleigh len
the full Fourier content of the laser beam is thus angula
resolved as are the individual modes fully resolved in o
situation for distances large compared to the Heisenb
length.
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Combining the expression~38! of the complex field with
the previous assumption on the random behavior of
eigenmodes and of the termsan exp(2ibnz), we deduce that
the real and imaginary parts of the complex fieldc(r,z) are
themselves independent random Gaussian variables.
cannot be verified from the experimental results because
do not have experimental measurements of the complex
in the fiber. Nevertheless, using this Gaussian analysis,
can derive a prediction for the behavior of the probabil
distribution of the intensity and thus compare it to the resu
deduced from the measured intensity.

If we separate the intensity of the fieldI 5ucu2 using the
real and imaginary part of the field assumed to be equiva
independent random Gaussian variables, we can derive
expression of the intensity probabilityP(I )dI from the joint
probability dostribution. Its evaluation leads to the Poiss
distribution

P~ I !5exp~2I /^I &!/^I &. ~42!

Figure 17~b! illustrates the good agreement between
Poisson distribution issued from our Gaussian analysis
the intensity probability calculated from the measured ne
field intensity of the superposition of modes presented in F
17. The initial illumination is a focused beam with a310
microscope objective. This experimental result agrees w
our assumption on the Gaussian statistics of the eigenm
of the truncated and chaotic fiber. A validation of this a

FIG. 17. ~a! Mode superposition in the case of a focused ex
tation for the D-shaped fiber and~b! its intensity probability com-
pared to the expected Poisson distribution.
3-10
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SPECKLE STATISTICS IN A CHAOTIC MULTIMODE FIBER PHYSICAL REVIEW E65 056223
sumption will be provided by the investigations on the sp
tial autocorrelation functions which are much more sensit
to the nature of eigenmodes.

We now turn to compare this probability distribution
the one calculated for the near-field intensity pattern at
output of the circular fiber represented in Fig. 18~a! for a
focused excitation by a310 microscope objective. As see
before, we cannot use the Gaussian analysis to describ
behavior of the eigenmode of the circular fiber so that we
not expect a Poisson distribution for the intensity probabil
In Fig. 18~b!, we have plotted the intensity probability ass
ciated to the above intensity distribution. We can observ
large deviation from the Poisson distribution, thus confir
ing that the Gaussian analysis is only relevant for the
scription of chaotic systems.

We are now interested in evaluating the field autocorre
tion function of a superposition of modes as measured in
experiment. Although the complex field at the fiber outp
cannot be measured directly, we deduce some of its pro
ties from the far-field intensity. Indeed, the far-field intens
is proportional to the Fourier transform of the complex ne
field as the detector is placed in the focal plane of a lens

The field autocorrelation function is deduced from the f
field intensity using the well-known Fourier transform rel
tion

Cc~r0 ,z;kc!5TF
21$ Ĩ ~k,Q!%, ~43!

where (k,Q) are the coordinates of the far-field space.

FIG. 18. ~a! Mode superposition in the case of a focused ex
tation for the circular fiber and~b! its intensity probability com-
pared to the Poisson distribution.
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The autocorrelation function is thus obtained from the e
perimental observation by the way of a simple inverse F
rier transform performed on the far-field intensity. Theradial
function Cc(r 0 ,z;kc) is then calculated from the vectoria
function Cc(r0 ,z;kc) using the angular integration~31! and
is presented in Fig. 19. One should notice that the radial fi
autocorrelation still oscillates with a quasiperiod but quick
decreases asr 0 increases. It implies that long-range correl
tions within the complex field are reduced due to the sup
position of several modes. As before, we use our Gaus
analysis to derive a prediction for the behavior of the fie
autocorrelation function for a superposition of modes. T
analysis is original in the sense that we apply a modal
proach to describe our experimental results.

The field autocorrelation function is defined as

Cc~r0 ,z;kc!5^c~r1r0 ,z!c!~r,z!& r . ~44!

If one substitutesc(r,z) by its expression~38!, the field
autocorrelation function reads

Cc~r0 ,z;kc!5 (
n,n851

N

^anan8
!fn~r1r0!fn8

!
~r!e2 ibnzeibn8z& r

5 (
n51

N

uanu2^fn~r1r0!fn
!~r!& r . ~45!

The distinct eigenmodes are assumed to be statistically in
pendent to derive the second expression. In relation~45! one
can recognize the definition of the field autocorrelation fun
tion Cf(r0 ;k) @Eq. ~32!# associated to an individual mod
fn . Then, using the expression~28!, we deduce the expres
sion of the field autocorrelation function

Cc~r0 ,z;kc!5 (
n51

N

uanu2J0~knr 0!. ~46!

As a consequence, the Gaussian analysis yields a field a
correlation function written as a weighted sum of zero-ord

-

FIG. 19. The radial field autocorrelation function forkcR
'30.0 derived from the far-field intensity pattern of Fig. 16.
3-11
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DOYA, LEGRAND, MORTESSAGNE, AND MINIATURA PHYSICAL REVIEW E65 056223
Bessel functions evaluated at each value ofkn . Expression
~46! thus includes the contribution of each eigenmode of
superposition~38! to the field correlations.

To calculate the right-hand side of Eq.~46!, one needs to
know the value of the squareuanu2 of the coupling coeffi-
cients which are defined by the condition of illuminatio
~39!. Experimentally, these terms cannot be perfectly eva
ated. Indeed, only a smoothed versionb(k) can be deduced
from the measured far-field intensity

b~k!5
1

2pE0

2p

Ĩ ~k,Q!dQ, ~47!

Q being the angular variable in the spatial frequencies sp
(kx ,ky).

To each eigenmodefn corresponds a ring pattern in th
far field with mean radiuskn . The width of each ring is
ideally determined by the finite size of the section of the fib
and fixes the scale over which the weighted dens
(uanu2d(k2kn) is smoothened to yieldb(k). Provided that
the experimental resolution be sufficient, the evaluation
the uanu2’s throughb(k) is thus intrinsically limited by dif-
fraction. Nevertheless, we can numerically confirm the va
ity of our Gaussian analysis for the description of the fie
autocorrelation function using the calculated eigenmo

FIG. 20. Distribution of the coupling coefficients for a plan
wave illumination withk0R540.0 andQ517°.

FIG. 21. Comparison between the experimental field autoco
lation function~circle! and the prediction derived from the Gaussi
analysis~line!.
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~see Sec. III B!. To do this, we project a plane wav
exp(2ik0•r) for a given value ofk0 on the basis of the
eigenmodes and we propagate this initial condition along
fiber by multiplying each eigenmodefn by the phase factor
in the paraxial approximation exp(2ibnz)'exp
@2i(En /bco)z#. The expression of the field for a given leng
of propagationz is thus given by the relation

c~r,z!5 (
n51

N

anfn~r!expS 2 i
En

bco
zD . ~48!

The coupling coefficientsan are then derived from the pro
jection of the initial condition exp(2ik0•r) on the eigen-
modes basis$fn% ~39!. In Fig. 20, we have plotted the dis
tribution of the coupling coefficients associated to a pla
wave illumination with k0R540 (k05uk0u). The
corresponding smoothb(k) is also shown to exemplify the
diffraction limit.

One can note that the distribution of the coupling coe
cients is centered on the initial conditionkcR5k0R540.
Using the coupling coefficients, we can evaluate the pred
tion ~46! deduced from the Gaussian analysis. In Fig. 21,
have represented the field autocorrelation function calcula
from the far-field intensity~43! compared with the evaluation
of the expression~46!. The agreement between the tw
curves is excellent, thus validating the choice of our mo
Gaussian approach.

Even though the Gaussian analysis of the experime
field autocorrelation function is intrinsically spoiled by di

e-

FIG. 22. ~a! Near field and~b! far field at the output of a trun-
cated fiber forkcR'29.0.

FIG. 23. ~a! Near field and~b! far field at the output of a circular
fiber for kcR'29.0.
3-12
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fraction, one can nonetheless extract from it some inform
tion on the nature of the field. In particular, we can try
illustrate the essential difference in nature between the fi
in the regular~circular! fiber and in the chaotic~truncated!
fiber. We first consider the intensity patterns at the outpu
both fibers for a plane-wave illumination~Figs. 22 and 23!.
These intensity patterns correspond to the superpositio
several modes around a central value ofkcR equal to 29. In
order to extract the contribution toCc(r0 ,z;kc) of only a
few eigenmodes, we perform ak filtering by multiplying the
far-field intensity pattern by a Gaussian ring. The width
the ring is fixed to 0.4/R ~corresponding to the pixel size an
approximately comprising nine modes! for both types of fi-
ber~regular and chaotic! and its mean radius tokcR.29. We
then calculate the autocorrelation functions associated
these filtered far-field intensity patterns by performing
inverse Fourier transform~43!. The resulting autocorrelation
functions are presented in Fig. 24. One can clearly see
isotropic behavior of the autocorrelation function associa
to the field in the D-shaped fiber@Fig. 24~a!#. Indeed, this
behavior is the signature of the ergodic nature of the cha
eigenmodes of this truncated fiber. On the contrary, in
case of the circular fiber@Fig. 24~b!#, privileged directions of
high correlations mark the autocorrelation function. Th
nonisotropy results from the spatial distribution of the reg
lar eigenmodes of the circular fiber which are characteri
by a finite and well-defined number of zeros in the radial a
angular coordinates.

So far we have only considered the ergodic nature of
chaotic eigenmodes. Deviations from this generic beha
are nevertheless observed that can be related to specifi
riodic ray motion associated to the short least unstable or
of the system, leading to the so-called scarring phenome
A scarredeigenmode displays intensity enhancement alo
short periodic orbits~see Sec. III!. The spatial localization of
light induces strong correlations for both field and intens
and the resulting autocorrelation function exhibits strong
isotropy @16#.

V. APPLICATION TO DOUBLE-CLAD FIBER AMPLIFIERS

Since the first appearance of erbium-doped fiber amp
ers ~EDFA! in 1987, a novel way of using optical fibers ha

FIG. 24. Autocorrelation functions associated to filtered
fields ~see text! for ~a! the chaotic D-shaped fiber~far-field intensity
patterns shown in Fig. 22! and ~b! the regular circular fiber~Fig.
23!. Note the hexagonal structure which is strongly marked near
origin in the nonergodic case.
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proven its relevance and efficiency in optical telecommu
cations@41#. These EDFA’s are now commonly used to r
store optical signals in long-haul optical links. As applic
tions in this domain require more and more powerful signa
high pump power levels are consequently needed. Dou
clad fibers permit us to couple high pump power into t
doped core. In these fibers, the doped amplifying sing
mode~for the wavelength of the signal to be amplified! core
is embedded in a multimode~for the pump wavelength! inner
cladding where the pump is injected. Amplification
achieved by a transfer of the pump power from the inn
cladding into the core as it propagates along the fiber.
using an inner cladding with the shape of a chaotic billia
one may optimize the overlap of the pump field with the co
along the propagation, thus reducing the differential mo
absorption of the pump generally observed in standard ci
lar double-clad fibers. Indeed, in a regular circular fiber,
overlap of guided modes varies widely from one mode to
other, thus leading to fluctuating transfer rates from the in
cladding into the core between modes. On the contrary,
the ergodic modes of a chaotic fiber, the overlap with
core region is essentially a constant. In a recent paper@42#,
we have proposed a quantitative theory for such an o
mized pump absorption and provided numerical results
fair agreement with the predictions of our theory. The lat
essentially relies on the fact that ergodic motion ensure
maximal and constant overlap of the pump intensity with
doped absorbing core along the fiber. We have also sh
that suppression of marginally stable orbits can significan
improve the absorption characteristics of such double-c
EDFA’s. Experimental demonstration of pump absorpti
optimization in a doubly truncated double-clad fiber has be
recently achieved@43#. As an illustration, we show in Fig. 25
the experimental near-field intensity pattern of a chromiu
doped double-clad fiber obtained by Ph. Leproux, Ph. R
J.-M. Blondy, and D. Pagnoux of the Guided and Integra
Optics group from Institut de Recherche en Communicati
Optiques~IRCOM! Limoges, France.

VI. CONCLUSION

In conclusion, we have provided the first complete the
retical and experimental characterization of wave intensity

r

e
FIG. 25. Near-field intensity pattern at the output of a doub

clad fiber with a doubly truncated inner cladding. The white circ
delimits a chromium-doped core~IRCOM, Limoges!.
3-13



ic
it

n
ea
he
a
p
fu
ns
s
se

o-
a

ers
re-
ng

of
rk

ns
m

DOYA, LEGRAND, MORTESSAGNE, AND MINIATURA PHYSICAL REVIEW E65 056223
a chaotic multimode optical fiber in terms of spatial statist
and correlations. We have been able to confirm the valid
of a Gaussian analysis for the statistics of the wave patter
the speckle regime. Special attention was paid to the n
field autocorrelation function, which is obtained through t
measurement of the far-field intensity, thus giving a dual w
of characterizing the amount of randomness in the pro
gated field pattern. Starting from the above experiment,
ther progress is envisaged along the following directio
selective excitation of modes and parametric correlation
the frequency domain through the use of tunable la
sources.

This original experiment in multimode optical fibers pr
vides interesting prospects to the applications of wave ch
concepts to modern technology as recently exemplified
e
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optical fiber amplifiers based on double-clad chaotic fib
@42#. Furthermore, multimode optical fibers have recently
ceived renewed interest in the context of optical multiplexi
in transmission systems@44#. The feasibility of such network
applications strongly relies on a proper understanding
propagation of light in complex fibers. The present wo
aims to serve this objective.
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